Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox.
نویسندگان
چکیده
L-Arginine is the only endogenous nitrogen-containing substrate of NO synthase (NOS), and it thus governs the production of NO during nervous system development as well as in disease states such as stroke, multiple sclerosis, Parkinson's disease, and HIV dementia. The "arginine paradox" refers to the dependence of cellular NO production on exogenous L-arginine concentration despite the theoretical saturation of NOS enzymes with intracellular L-arginine. Herein, we report that decreased availability of L-arginine blocked induction of NO production in cytokine-stimulated astrocytes, owing to inhibition of inducible NOS (iNOS) protein expression. However, activity of the promoter of the iNOS gene, induction of iNOS mRNA, and stability of iNOS protein were not inhibited under these conditions. Our results indicate that inhibition of iNOS activity by arginine depletion in stimulated astrocyte cultures occurs via inhibition of translation of iNOS mRNA. After stimulation by cytokines, uptake of L-arginine negatively regulates the phosphorylation status of the eukaryotic initiation factor (eIF2 alpha), which, in turn, regulates translation of iNOS mRNA. eIF2 alpha phosphorylation correlates with phosphorylation of the mammalian homolog of yeast GCN2 eIF2 alpha kinase. As the kinase activity of GCN2 is activated by phosphorylation, these findings suggest that GCN2 activity represents a proximal step in the iNOS translational regulation by availability of l-arginine. These results provide an explanation for the arginine paradox for iNOS and define a distinct mechanism by which a substrate can regulate the activity of its associated enzyme.
منابع مشابه
EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملEffect of Neutrophils on Nitric Oxide Production from Stimulated Macrophages
Background: During the initial phase of an infection, there is an upregulation of inducible nitric oxide synthase in the macrophages for the production of nitric oxide. This is followed by the recruitment of polymorphonuclear leukocytes (neutrophils) which release arginase. Arginase competes with inducible nitric oxide synthase for a common substrate L-arginine. Objective: To investigate whethe...
متن کاملAvailability in Inflammatory Macrophages Oxide Synthase by IL-13 and Arginine Translational Control of Inducible Nitric
متن کامل
Nitric Oxide Functions; an Emphasis on its Diversity in Infectious Diseases
Nitric oxide is a short-lived mediator, which can be induced in a variety of cell types and produces many physiologic and metabolic changes in target cells. It is important in many biological functions and generated from L-arginine by the enzyme nitric oxide synthase. Nitric oxide conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission and cytotoxici...
متن کاملArginase Activity and Its Effects on Pathogenesis of Leishmania
Leishmaniasis is a tropical parasitic disease that has become a major health challenge in many countries of the world. Not only has not been found any effective vaccine or treatment for the disease eradication, but also the advent of drug resistance is also increasing. Therefore, it is vital to take a precise attention to the physiochemical cycles of the Leishmania parasite and to identify i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 8 شماره
صفحات -
تاریخ انتشار 2003